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Inthis paper, we introduce a novel acceleration method for the calculation of dyadic
Green’s functions for the mixed potential integral equation formulation of electro-
magnetic scattering of scatterers embedded in a multilayered medium. Numerical
results are provided to demonstrate the efficiency and accuracy of the proposed
method. @ 2000 Academic Press
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1. INTRODUCTION

Integral equation formulation of electromagnetic scattering of conductive surfaces
popular approach for many applications, including the parametric extraction for IC int
connects and computer packaging simulations [1] and the performance of multilaye
antenna calculations [2]. The main advantage of the integral formulation [2, 3] is red
tion of unknowns and its flexibility in handling very complex geometries of the scatteri
surface and the automatic enforcement of Sommerfeld exterior decaying conditions b
construction of proper Green’s functions in the multilayered medium usually encounte
in those applications [4].

However, the calculation of the dyadic Green'’s functions in a multilayered medium |
been one of the bottlenecks in the effort to increase the speed of integral equation met
the other major bottleneck has been the solution of the impedance matrix resulting fron
boundary element methods or method of moments [2]. Extensive research has been dc
accelerating the calculation speed of the dyadic Green’s functions in a multilayered mec
[3, 5-7]. The key difficulty is the calculation of the Sommerfeld integral appearing in t
Hankel transformation, which defines the time domain dyadic Green’s functions in tel
of their Fourier spectral forms. Such difficulty comes from several factors: (a) the existe
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2 CAI AND YU

of surface wave poles in the spectral form of the Green’s functions [3], which affects
selection of the contour path in the Sommerfeld integral; (b) the slow decay of the spec
Green’s functions, especially when the field location and source location are close, ¢
many of the VLSI and MMIC applications; and (c) the oscillatory behavior of the Hank
transformation kernel (i.eJy(z)) and the highly oscillatory profile of the spectral Green'’s
functions in a complex integration contour.

Several methods have been proposed to address the difficulties mentioned above
example, the Prony type method originally proposed in [5], and later modified in [6], tri
to extract the surface wave poles from the spectral form of the Green’s function; tl
exponential functions are used to approximate the remaining part of the Green'’s func
in the spectral domain. The main problem with this approach is the requirement of
extraction. Techniques to extract the pole have been found to be very unstable and
extraction is close to impossible when many layers are considered. Also, approximatio
spectral Green'’s functions by exponentials via a Prony technique is not efficient for hi
frequency problems or when the source and observation points are not on the same la;
a multilayered structure. Another approach [7] is to try to find a steep descent path for
Sommerfeld integration, which again is not easy for many layered media.

Inthis paper, we present a novel method which utilizes a window function as a convolut
kerneltothe time domain Green'’s function. The effect of this window function is to modul
the decay of the integrand in the Sommerfeld integration. The idea of convolution wit
window function in the time domain is equivalent to a low-pass filter in the frequen
domain used in signal processing and Gabor transformation in wavelet theory [8]. A sim
approach has been used to recover high-order approximations of discontinuous func
from their Fourier coefficients in spectral methods [9]. The fast decay rate of the wind
function in the spectral domain effectively creates a steep descent path for the integre
without the existence or the information of the location of possible steep descent path:
the spectral Green'’s functions. Extensive numerical results have confirmed the effective
of this method, especially when the observation and source locations are close, where:
Sommerfeld integration will converge extremely slow. A comprehensive code WDS (W
Design Simulator) [10], which uses this window function technique, has been used to ¢
out 3-D full wave analysis of RF components and scattering of general objects in arbit
multilayered media.

The rest of the paper is divided into the following sections: Section 2 gives a br
introduction to the dyadic Green'’s functions in a multilayered medium; in Section 3, Gree
functions for the vector and scalar potentials used in the mixed potential integral equat
are described; Section 4 gives the window-function-based acceleration technique and
estimations; Section 5 provides several numerical examples to demonstrate the effective
and accuracy of the proposed methods; and a conclusion is given in Section 6. The app:
contains technique derivations and proofs.

2. DYADIC GREEN’'S FUNCTION IN MULTILAYERED MEDIA

Inthis section we presentthe setup for the dyadic Green’s fundﬁgns | 1), GH (rir)
inamultilayered medium. As we only consider time-harmonic fields, atime-harmonic fac
el“t is assumed in all field quantities. The medium considered is shown in Fig. 1. Itis a st
ified structure consisting dfl + 1 dielectric layers separated biyplanar interfaces parallel
to thex—y plane of a Cartesian coordinate system and located=at-d;,i =0, 1,..., N.
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FIG. 1. Athree-dimensional scatterer embedded i\a# 1 layered medium.

The medium of themth layer is characterized by permeabiljiy, and permittivity ep,.
Components of dyadic Green'’s functioBg (r | r'), Gy (r | r’) represent the electromag-
netic fields at location excited by current Hertz dipole €t namely,G¢' is thes-component
of the electric field generated bytariented current Hertz dipols, t = X, y, z.

2.1. Two-Dimensional Fourier and Hankel Transformations

As the multilayered medium is radially symmetric in tkey plane, we can apply the
two-dimensional Fourier transform to the Maxwell equations [11] to obtain the compone
of the dyadic Green’s function in the Fourier transform (spectral) domain. The followi
identities will be used in finding the Green’s function in time domain once the spectral fo
of the Green’s function is obtained:

f{f(x,yn:f”(kx,ky):% / / fx ye o gxdy  (2.1)
. 1 %) 0 )
f—l{f<kx,ky)}=f<x,y>=5 [ [ f(ke, ky) el 9 i dky.  (2.2)

The Fourierintegrals (2.1)—(2.2) can be conveniently expressed in terms of the Hankel ti
formif f(x,y) = f(p) is aradially symmetric function gf. Introducing polar coordinates
in both the transform and space domains,

X = pcCosB, Yy = psing,
ky = k, cosa, ky =Kk, sina,

where
=VX2+y2 B= arctar<
=,/k+kZ o= arctar<

FIE xi<
\/ \_/
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we can show that
fk,) = Fif(0)} = SLF(0](K,) (2.3)
and
f(p) = FHK,)) = S[ (k)] (0). (2.4)

where thenth-order Hankel transforr, [ fN(kp)] for integern > 0, is defined as

SUTKNE) = [ k) ko (2.5)
0
and the roles op andk, can be switched and whedg(z) is thenth-order Bessel function.

2.2. Dyadic Green’s FunctionéE, GH

From the Maxwell equations [11], the electric field is shown to satisfy the vector equat
VxVXxE-—KE=—-jould (2.6)

wherelisthe currentsource. Inasource-free region, we have the following vector Helmh
equation:

V2E + K°E = jouJ. (2.7)

The dyadic electric Green'’s functioﬂgét is the solution to (2.7) when the source is
at-directed electric dipole, namely(r) = jw%(S(r —r)t. The magnetic dyadic Green’s
functionGy can be obtained by

— 1 —
Gu(r 1) =——""-V x Gg(r | ). (2.8)
Jou

3. DYADIC GREEN'S FUNCTIONS G(r | 1), Gy(r | ')

In this section, we describe the dyadic Green'’s functions for both vector potentials
scalar potentials. These are used for the mixed potential integral equation formula
(MPIE) of scattering problems [3, 4].

In a MPIE formulation, the electromagnetic fields can be expressed in terms of a ve
potentialA and a scalar potentid, i.e.,

E=—joA—VV, (3.1)

1
H= -V xA, (3.2)
w

where

1
V2A+k2A—MV; xV xA=—ple (3.3)
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and wherel, is the electric current source akfl= w?e . Equation (3.3) simplifies to the
following equation whem is a constant:

V2A + KA = —p1 Je. (3.4)
If the Lorentz gauge condition is used to relstgto A, i.e.,
V -A=—jweuVe, (3.5)
then we have
2 2 1
V Ve+k Ve: _Epe, (3.6)
wherepe is the charge density related to the electric curdgrity the continuity equation

The vector potentials used to represent the magnetic ffield (3.2) are not unique
and there are many ways of defining the potentials. Two of the most used approache
Sommerfeld potentials [12] and transverse potentials [13, 14]. In formulating these po
tials, we take into account that only two components of the magnetic field are indepenc
thus only two components of these vector potentials are sufficient. In the Sommerfeld
tential formulation, it is stipulated that the electromagnetic fields from a horizontal elec
dipole (HED) can be represented by a horizontal componeAtinfthe same direction of
the HED and the-component of\; fields of a VED (vertical electric dipole) will be repre-
sented by only the-component ofA. In contrast, for the transverse potential formulation
HED generated electromagnetic fields will be represented by two transverse compor
of A while a VED generated field is represented by only zrmomponent ofA. Other
potentials include Hertz—Debye potentials [15].

Sommerfeld potential. The dyadic Green’s functio®  for the Sommerfeld vector
potentialA [12] has the form

Ga= (XG4 2GX)% + (YGX + 2GY) ¥ + 2Gi&. (3.8)

Transverse potentials.The dyadic Green'’s functioB  for the transverse vector poten-
tial A [13, 14] has the form

Ga= (RGX+ IGR)K + (XGY + YGW) 9 + 2G2. (3.9)

The scalar potentigby (r | r’) and the components in the Sommerfeld and transver
potentials can be obtained in the spectral domain; explicit formulas can be found in [3,

4. FAST CALCULATION OF DYADIC GREEN'S FUNCTIONS Ga(p, z Z), Gv(p, Z Z)

The spectral components of the vector and scalar potential Green'’s fulctign z; 2)
andGy (k,, z; Z') in Section 3 can be shown [3, 10] to consist of terms such as

jkxG(k,, 2 2), jkyG(k,,2 Z) 4.1)
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whereG(k,, z; Z) is a function ofk,. Thus, the inverse Fourier transform of (4.1) can by
evaluated as

FHikGK,. 22)) = 1 F UK, 22 = o $Gk,22) (42
o~ 9 < 9
FHikyG(k,, 2 2)) = a—y}'_l{G(kp, z,7)) = ?yS)(G(kp’ z,2)). (4.3)

The partial derivatives with respect xoor y can be approximated by a finite difference
formula with appropriate accuracy. Therefore, we only have to discuss an accelers
algorithm for calculating the Hankel transformation

G(p,.z2) = S(GK,, 7)) = /C Gk, z; Z) Jo(0k,)k, dk,, 4.9

where the contou€ should be in the first quadrant of the complex wavenunkhespace
from 0 tooco.

The main difficulty involving the calculation of functid&(p, z; Z') via the Hankel trans-
form (4.4) is the fact that the integrand decays very slowly whenz', orz~ 7 (i.e., when
the source point and the observation point are on or nearly on the same horizontal pl:
In order to accelerate the calculation®fp, z; ) whenz~ Z orz = Z, we introduce the
following mth-order window function/, (X, y) = ¥a(p) with a support size:

2m .
Valo) = {(()l e I(:tﬁefrvz\jise (49
We have the following lemma regarding the window functifai(p).
LEMMA 1. For any cylindrical symmetrical function(p), we have the identity
fx y) * vax, y) = SLFk)Palk,)](0), (4.6)
where
fik,) = S f (2]ky)
and
Taky) = SYa(0)](k,).

To recover the value of (x, y) from its Hankel transform, we also need the following
result.

LEMMA 2. Let f(x,y) be a C function. Then it can be shown that
f(X, y) * Wa(x» y) = MO f (Xv y) + MZ( fXX(ga 0) + fyy(g, O))s (47)
where0 <& < p = /x2+ y2and

2

Ta
Mo = X, y)dxdy=
0 /Xz+y2<awa( ydxdy= T
My = (x, y)x?dx dy.
2 /X2+y2<a1/fa y Y.
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Proof. The estimate (4.7) can be obtained by using a second-order Taylor expan
for the functionf (X', y) at point(x, y) and using the fact that terms such(@s— x) and
(y’ — y) will vanish in the convolution with the radial symmetrical functigp(x, y). =

As aresult of (4.6) and (4.7), we can approximétg, y) as
1 ~ ~
Py = oSl k) vakol(o) + 0@ asa— 0. (4.8)

Applying (4.8) toG(p, Z’; Z), we obtain the following algorithm.

ALGORITHM 1 (Fast algorithm foG(p, z; Z)). Forp > a,
/ 1 2
Gp,z,7) = VWO(P) +0(@°) asa— 0, (4.9)
0

where

Wo(p) = SIG(K,, Z: 2)Ta(k)](p). (4.10)

Remark 1. Algorithm 1 requires conditiop > a as otherwise the Green'’s function will
be unsmooth and the estimate in (4.7) will not be valid.

Therefore, to apply the approximation (4.8) to functi@ip, Z; Z) for p <a, we will
rewrite G(p, Z; Z) as

G(p,z,7) = Ga(p, . Z)/r?, (4.11)

wherer = \/x2 + y2 + (z — Z)2. From the singularity property of the vector and scala
potential Green’s function [16], we can assume ®Batp, z; Z) = r?G(p, z; ) isasmooth
function, and the approximation (4.8) thus can be used. Meanwhile, we have the follow
identity.

LEMMA 3. LetGy(p, z;Z) =r?G(p, z.Z), withr = \/p2 + (z— Z)2. Then

Ga(p, Z; Z) * Ya(X, Y) = r*Wo(p) — 20Wa(p) + Wa(p), (4.12)
where
Wi(p) = SIG(Ky, 2 Z) (K () (4.13)
Wa(p) = SIG(K,. z: 2) V5" ()] (p) (4.14)
and
Fatky) = Sl0a(1k) = [ valo) B0 80 (4.15)
Ttk = S0 = [ a0 a0 dp (4.16)

Vi ky) = /0 Ya(p)Jo (k,p) p°dp. (4.17)
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Proof. The proof of (4.12) can be found in the Appendixa

Combining (4.7) and (4.12), we have the following approximation scheme to the Gree
function.

ALGORITHM 2 (Fast Algorithm forG(p, z; Z)). If p > 0,a — 0, then

1
G(p, z:7) = 15[ *Wo(p) — 20Wa(p) + Wa(p)] + O(@). (4.18)

Next, we will address the issue of how to calculgie(p), Wi(p), andWa(p). First we
need the following spectral propertiesyf(p) and&;(kp) and&;*(kp).

LEMMA 4. The Hankel transforny,(k,) for ¥a(p) and /% (k,) and ¢ %*(k,) have the
following decaying propertigs.e., as|k,| — oo:

la(k,)| = o(jak,|™™) (4.19)
[yi(k,)| = o(jak,| "™ (4.20)
W5 (K,)| = o(lak,|™™). (4.21)

Proof. We will outline the proof of (4.19), the other two decay conditions can be shov
similarly. Using the equivalence between the 2-D Fourier transform and the Hankel tre
form (2.3), we can rewrite/a(k,) as

Va(ky) = F(a)(K,, 0) = //wa(x y)e *dx dy
which, after integration by parts with respectteoariablem times, becomes

- (=D My ikox 1
Yalk,) = 2n(—jkp)m// x, y)e *Xdx dy= o(k’“)

To derive the estimate (4.20) faﬁ;(k,,), we first use the identityl;(x) = —J;1(x) and
integrate by parts with respect toto rewritey (k,) as

Vhk,) = /O ¢ (p) Jo(k,p)p dp

whereg (p) = ¥} (p)p + 2¢a(p). Then, the same proof can be used to get (4.2@).

The fast decay condition of (4.19)—(4.21) ensures that a short integration contour ca
selected without sacrificing the accuracy of approximation of Algorithms 1 and 2.

4.1. Selection of Contour C and Window Order m and Support a

It is well known that the spectral fonﬁ(kp, z; Z) has surface wave poles which are
located in the fourth quadrant of the complexplane. Therefore, we should deform the
integration contour in the definition &% (p),i = 0, 1, 2, to a complex contour which stays
away from the surface poles. A simple contd@ly suggested in Fig. 2, consists of four
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FIG. 2. ContourC for Algorithms 1 and 2.

straight segments;, 1 <i < 4. The last segmerit, will be finite and is determined by the
decay properties of (4.19)—(4.21).

To maintain the second-order accura@ya?) of Algorithms 1 and 2, we will choose the
L4 portion of the contoulC in Fig. 2 to satisfy the following minimum condition, while
using the decay condition (4.19)—(4.21):

Coo m-s—3

Here we assume that f&}, € [kmax, 00), we have for some integsrand constanC,,
IG(K,. Z: Z)| < Coo(Kp)®.

The window support is the primary parameter to consider. It is determined by th
second-order accuracy estimate (4.18) for the algorithm for the dyadic Green’s funct
Oncea is selected, the length of the contduy should be given by (4.22).

The order of the window functiom in principle should be large to have faster decay
of ¥a(k,), ¥i(k,), andy*(k,) according to (4.19)—(4.21). However, for smaller valu
of k,, windows with lower order may have smaller magnitude in the spectral domain (
Figs. 3-5). In our numerical tests, a windgw(p) of order 5(m = 5) was a good overall
choice.

4.2. Calculations ofra(k,), ¥%(k,), and /2 (k,)

In practice, these functions can be precalculated for a rangg @& determined by the
estimate (4.22). For small argument, they can be calculated directly by Gauss quadrat
while for largerk, we can use the identities

- i Co1
Patky) =Y CM(-D) oz 13.@k)

i=0 P

. i o1
Vatk) =3 CM-D s 1ai2@k)

i=0 4

N i o1
2ko) =D CRD 15 a(ak,),

i=0 4
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FIG. 3. The spectral decay of window functionﬁSB(kp), a =1 of orderm = 3,5, 7. Inset is the shape of
window functiony,(p), a = 1 of orderm = 3,5, 7.
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FIG. 4. Spectral decay of window functions; (ak,), a = 1 of orderm = 1, 3,5, 7.
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FIG.5. Spectral decay of window function%;*(akﬂ), a=1oforderm=1,3,5,7.

where for positive or zero integers v

1.2 =/O p"Jy(p) do.

For small arguments af = ak,, |/ (z) and (4.15)—(4.17) can be calculated directly witt
Gaussian quadrature, while for large valueg,ofie can use the formulas

(v+;¢+l)

IMV(Z) = zﬂl—-(u—ii-q—l) + Z[(M +v-— 1)‘]1)(2)31,71,1)71(2) - Jvfl(z)SA,v(Z)]v
5=

where§, ,(z) are the Lommel functions (see Appendix A.2).

5. NUMERICAL RESULTS

Inthis section, we validate Algorithm 2 for the fast calculation of dyadic Green'’s functio
in homogeneous and multilayered media. In all cases, the frequency in the Green'’s funi
f =1 GHz.

5.1. Window Functions in Spectral Domain

The window functiony, (X, y) of orderm has a compact support in the physical domail
while~in the spectral domain it decays in an algebraic orded'l so do bothy?;(k,,)
and ¥ 2*(k,) used in Algorithm 2. Figure 3 shows both window functiofig(x, y) of
orderm = 3, 5, 7 with support sizea = 1 (lower left insert) and their frequency decays
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respectively. Figures 4 and 5 show the frequency decay[s;d{p) and &;*(kp) of order
m =1, 3, 5, 7 with suppora = 1, respectively.

5.2. Second-Order Accuracy and Efficiency of Algorithm 2

Algorithm 2 is second-order accurat®(a?). The contour integrations in the definition
of Wi (p),i =0, 1, 2, of Algorithm 2 are only evaluated over a truncated finite path as
Fig. 2. By choosing thd_, portion of contourC according to (4.22), we can maintain
an overall error 0fO(a?). To verify the second-order accuracy, we apply Algorithm 2 tc
calculate the scalar potential for the free-space Green'’s function

1 e IkR
Gl) ,Z; Z/ - )
(p ) = R

(5.1)

whereR = |r —r’|.

Figure 6 shows the real and imaginary parts of calculated resulG fgs, z; ), z =
0.001 m Z = 0.002 m. The lines are the exact solutions given by (5.1) and the symbols
the calculation by Algorithm 2 with. 4, = 20/a in the contour of Fig. 2. A windowr,(p)
of orderm = 5 and support siza = 0.005 m is used. Figure 7 shows the errors in log-scal
of three applications of Algorithm 2 with three different window siaes w, 2w, and 4v,
wherew = 0.005 m. Itis clear to see that the convergence ra@(&?).

Finally, Fig. 8 shows the savings of Algorithm 2 over the direct Sommerfeld integrati
of (4.4). In Fig. 8,G; denotes the calculation results of Algorithm 2 (squares, diamonc

Gin free space

p (M)

FIG. 6. Free-space scalar Green'’s functi@n(p, z; Z), z= 0.001 m,zZ = 0.002 m. Lines indicate analytic
results; symbols are for calculations with Algorithm 2 with windgw(p) of orderm = 5 and window support
a = 0.005m.
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FIG. 7. Free-space scalar Green'’s functi@Gg (o, z; Z), z= 0.001 m,Z = 0.002 m. Relative errors with
Algorithm 2 with windowr,(p) of orderm = 5 and window suppom = h, 2h, and 4, whereh = 0.005.
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FIG. 8. Green’s functionGy (p, z; Z), z= 0.001 m,Z = 0.002 m. Errors of Algorithm 2 with window

functionyr,(p) of orderm = 5andL, = L, 2L(¢), and 4.(v); L = 5/a; window support siza = 0.005. Errors
of direct numerical integration of (4.4) usihg, = 240L (A), 400L (O).
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FIG. 9. Half free space over a PECat= 0.

z=0

down triangles) with the last portion of contour 2) = L, 2L, and 4., whereL = 5/a
anda = 0.005 m is the support size of the window function of ordee= 5. G5 denotes
the direct integration of Sommerfeld integration (4.4), and upper triangles and stars
the results with a truncated contoug = 240L, 400L, respectively. From Fig. 8, we can
see that results of Algorithm 2 with, = 2L are already better than those of the direc
Sommerfeld integration with. 4 = 400L; thus the contours used in Algorithm 2 are 20C
times shorter than those used in direct integrations (4.4).

5.3. Green’s Functions for a Half Space over a PEC Ground Plane

In this test case, we calculate the vector potential Green’s funGidp, z; Z') for a half
free space over a perfect conductor (PEC) ground plame=ad in Fig. 9, where analytic
forms of the Green'’s functions are available by using mirror images [11].

Figure 10 contains the calculated real and imaginary part of the scalar potential Gre
functionGy (p, z; Z), z= 0.001 m,Z = 0.002 m. Again, windowy,(p) of orderm =5
with support sizea = 0.005 m is used antl; = 20/a in the contoulC of Fig. 2.

5.4. Ga(p, z; Z), Gy(p, z; Z) for a Five-Layered Medium

In this test case, we calculate the dyadic Green’s functﬁ),((s), z2,7),Gy(p, z; Z) for
the five-layered medium depicted in Fig. 11. Four dielectric layers are used between
open air and a PEC ground plane. The relative dielectric constants for the four dielec
layers are, from top to bottona; = 9.6, ¢, = 125, ¢; = 2.4, ande; = 3.6, respectively.
Their corresponding thickness dre = 0.001 m,h, = 0.003 m,h; = 0.002 m, anch; =
0.0015 m, respectively.

Window 4 (p) of orderm = 5 with support siza = 0.001 mis used in Algorithm 2 and
thelL,4 = 20/ais the last portion of the conto& in Fig. 2. Figure 12 shows the magnitude
and imaginary and real parts (top to bottom, lines are from integration of Hankel transfc
(4.4); symbols are results of Algorithm 2) of the scalar Green’s fundigip, z; Z') with
z = —0.0035 m,z = —0.0062 m. Figure 13 shows the compon&if‘(p, z; Z) for the
vector potentialA along with the magnitude and imaginary and real parts of this compone
(top to bottom, lines are from integration of Hankel transform (4.4); symbols are rest
from Algorithm 2). Figure 14 shows similar results for the compor@&ffip, z; Z).
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Gin free space with a PEC plane

1l

-2 1 ) 1 )

FIG. 10. Gy(p, z, Z), z=0.001 m,Z = 0.002 m for a half free space over a PEC ground plarne-at0.
Lines are the analytic results; symbols are the results of Algorithm 2 with win@aw) of orderm =5 and
support sizex = 0.005 m, withL, = 20/a in the contourC of Fig. 2.

5.5. Comparison with Method of Complex Images

In the last numerical test, we compare our method with the method of complex ima
of [5, 6]. The method of complex images has been extensively used in the enginee
communities for the calculation of dyadic Green’s functions. The idea is based on
Sommerfeld identity

e—ikz\z|

e j @
=_§/Cdka0 o) (5.2)

r

wherek; = | /k? — k2 andC is an integration contour from oo to oo in the first and third
quadrant of the complel,-plane.

&y
B =0.0015m £ =36
h, =0002m g,=24
hy =0003m &, =125
h, =0.001m £,=9.6
l‘\PEC

FIG. 11. Afive-layer medium: four dielectrics layered between thgak= 0) and a PEC ground plane.
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FIG.12. Scalar Green'’sfunctior3y (p, z; ),z = —0.0035m,z = —0.0062 m for the five-layered medium
in Fig. 9. Lines are results of direct integration of (4.4) for comparison; symbols are results of Algorithm 2 w
window ¥, (p) of orderm = 5 and window siz& = 0.001 m, withL, = 20/a in the contourC of Fig. 2.

XX
a

G

25 1 1 1 1 1 1 1 1
004 006 008 01 012 014 016 018 02 022

p (m)

FIG. 13. Vector potential Green’s function83*(p, z; Z), z= —0.0035 m z = —0.0062 m for the five-
layered medium in Fig. 9. Lines are results of direct integration of (4.4) for comparison; symbols are result
Algorithm 2 with window v, (p) of orderm = 5 and window sizex = 0.001 m, withL, = 20/a in the contour
C with Fig. 2.

16
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-1

-3 1 1 i 1 1 1 1 1
004 006 008 01 012 014 016 018 02 022

FIG. 14. Vector potential Green’s functionS3%(p, z; Z), z= —0.0035 m,z = —0.0062 m for the five-
layered medium in Fig. 9. Lines are results of direct integration of (4.4) for comparison; symbols are resul
Algorithm 2 with window v, (p) of orderm = 5 and window sizex = 0.001 m, withL, = 20/a in the contour
C of Fig. 2.

e
o
g
8 .5,
(?l:
1A
T5.5
L2
£ ——a R0l 4N
8F —e— Fast. 2h
: —— Faslg h
B I .~
6.5 R PO G, PO L i WIS SN (NPU oY AU JUNEN LSO JROS R [r TN (e Loty S |
Q 0.2 6 0.8

0.4
X {meter)

FIG. 15. Error comparison of the method of complex images (top line with 10 complex images) and
window-based fast algorithm (bottom three lines with window ondet 5 and suppor = 4h, 2h, hrespectively,
whereh = 0.001 andL, = 10/a).
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FIG. 16. Half space (air—soil with 5% water content).

The Green's function in the spectral domain is approximated by a sum of exponer
functions, namely

— jkri
e, (5.3)
fi

n
GkyzZ) > a
i=1

whereg; is the complex magnitude and= \/p2 + (z + Z — jb;)2is the complex distance
of the complex images. The coefficiemsandb; are obtained using a Prony method to fit
sampled values of tI”é(k,,) along a finite portion of the integration path

We have found out that such an approach will give good results when the source
observation points are on the same layer of a multilayered structure. However, the me
of complex images does not perform well when source and observation points are not ol
same level, and the Prony procedure for obtaining the coefficéggraisdb; also becomes
unstable and inefficient when high-frequency problems are considered.

In Figure 15, we present the results of both the method of complex images and
method (withm = 5 andL 4 = 10/a and three different values af= 4h, 2h, andh, with
h = 0.001) for the two-layer structure of Fig. 16 (air over soil with 5% water content). Tt
top line is the relative error in logrithmic scale with complex images (10 complex image
the other three lines depict the relative error in logrithmic scale with decreaing size of

6. CONCLUSION

We have proposed a novel acceleration method for calculation of the Sommerfeld integ
in the definition of dyadic Green'’s functions for electromagnetic scattering of conduct
embedded in multilayered media. The introduction of a window function effectively reduc
the cost of the calculation of the Sommerfeld integration by forcing a faster decay of
integrands. The efficiency and accuracy of the calculation of the multilayered Green’s fu
tions are critical to the speed of the method of moments for the electromagnetic scatte
of conductors in multilayered media. Numerical results presented in this paper and als
[10] show the effectiveness and accuracy of the proposed method. Because Algoritt
involves three integrals, compared with just one in Algorithm 1, a combination of the t
algorithms can give better efficiency. Moreover, the fast Hankel transformation appro
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proposed in [17] can be combined with Algorithms 1 and 2 for further speeding up of
calculation.

APPENDIX
A.1. Proof of Lemma 3 (4.12)
From the definition of the convolution, we have witz = z — 7/
Ga(p,z; Z) * Ya(X, y)
1 o0 o0
= / / X2+ y2+ APGKX, Y,z )Ya(x — X,y — y)dxdy
T J—o00 J—00

=1%[G(p, z; Z) * Ya(X, )] — 2X[G(p, Z; Z) * XVa(X, Y)]
—2y[G(p, Z; Z) * yPa(X, V)] + G(p, Z; Z) % (X* + YD) (X, ¥))
=" Wo(p) — 2xVi — 2yVs + Wa(p). (A.1)

In arriving at the second equation, we have used identiti€s= x? + 2x(x' — X) +

(X' — x)?2andy? = y? 4+ 2y(y' — y) + (Y — y)2. Using the integral definition of the Bessel
function,

p—n

In(2) = J—/ el2¢%¥ cosng do,
T Jo

we can show that

Vi = G(p, z; Z) * X¢a(X, y) = cOSH /Ooo G(k,, z 2) I (ok,)Vi(k,) k, dk, (A.2)
and

Vo= G(p. 2iZ) yha(x.y) =sind [~ Gik z2) 3ok i K, dks. (A3)
Wherel/Nf;(kp) is defined in (4.16). Therefore,

XVi+yVe = p /OOO G(Ky. z: ) (oK) (K,) K, d,
= pS[G ko, 2 P51 (0) = PWA(p). (A.4)

Similarly, we can show that

Wa(p) = G(p, z; Z) * (X2 + Y)¥a(X, ) = SIG(K,, Z )P (k)](p),  (A.5)

where&;*(kp) is givenin (4.17). Substituting (A.4) and (A.5) into (A.1), we have the proc
of (4.12).
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A.2. Lommel Function

If © +voru— vis apositive integer, the8, , (z) has a finite polynomial expansion in
terms of ¥z, i.e.,

e F—ia+Dr(-ib+1 (2\*
Sr@ =2 kZ:;F(—ia—k+1)F(—ib—k+1)( Y (z)

with n = min(—ia, —ib), ia = =4+ jp = 1=4=v,

For other values oft, v, we have the asymptotic approximations [19]

S.v(2) ~ 23R (1, ia,ib, _%)
- (w—12=1%  [(u—D*=v?[(n —3)? -7
_ ou—1 _
= {1 z - 2

[ — D2 = — 32— v[(n — 52— 7] }
— 26 _|_ S

wheresFo (1, ia, ib, —%) is the hypergeometric function [19].
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