
Journal of Computational Physics165,1–21 (2000)

doi:10.1006/jcph.2000.6583, available online at http://www.idealibrary.com on

Fast Calculations of Dyadic Green’s Functions
for Electromagnetic Scattering in a

Multilayered Medium

Wei Cai and Tiejun Yu

Department of Mathematics, University of North Carolina at Charlotte, Charlotte, North Carolina 28223
E-mail: wcai@uncc.edu

Received November 15, 1999; revised April 28, 2000; published online November 3, 2000
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Green’s functions for the mixed potential integral equation formulation of electro-
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1. INTRODUCTION

Integral equation formulation of electromagnetic scattering of conductive surfaces is a
popular approach for many applications, including the parametric extraction for IC inter-
connects and computer packaging simulations [1] and the performance of multilayered
antenna calculations [2]. The main advantage of the integral formulation [2, 3] is reduc-
tion of unknowns and its flexibility in handling very complex geometries of the scattering
surface and the automatic enforcement of Sommerfeld exterior decaying conditions by the
construction of proper Green’s functions in the multilayered medium usually encountered
in those applications [4].

However, the calculation of the dyadic Green’s functions in a multilayered medium has
been one of the bottlenecks in the effort to increase the speed of integral equation methods;
the other major bottleneck has been the solution of the impedance matrix resulting from the
boundary element methods or method of moments [2]. Extensive research has been done on
accelerating the calculation speed of the dyadic Green’s functions in a multilayered medium
[3, 5–7]. The key difficulty is the calculation of the Sommerfeld integral appearing in the
Hankel transformation, which defines the time domain dyadic Green’s functions in terms
of their Fourier spectral forms. Such difficulty comes from several factors: (a) the existence
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of surface wave poles in the spectral form of the Green’s functions [3], which affects the
selection of the contour path in the Sommerfeld integral; (b) the slow decay of the spectral
Green’s functions, especially when the field location and source location are close, as in
many of the VLSI and MMIC applications; and (c) the oscillatory behavior of the Hankel
transformation kernel (i.e.,J0(z)) and the highly oscillatory profile of the spectral Green’s
functions in a complex integration contour.

Several methods have been proposed to address the difficulties mentioned above. For
example, the Prony type method originally proposed in [5], and later modified in [6], tries
to extract the surface wave poles from the spectral form of the Green’s function; then
exponential functions are used to approximate the remaining part of the Green’s function
in the spectral domain. The main problem with this approach is the requirement of pole
extraction. Techniques to extract the pole have been found to be very unstable and pole
extraction is close to impossible when many layers are considered. Also, approximation of
spectral Green’s functions by exponentials via a Prony technique is not efficient for high-
frequency problems or when the source and observation points are not on the same layer in
a multilayered structure. Another approach [7] is to try to find a steep descent path for the
Sommerfeld integration, which again is not easy for many layered media.

In this paper, we present a novel method which utilizes a window function as a convolution
kernel to the time domain Green’s function. The effect of this window function is to modulate
the decay of the integrand in the Sommerfeld integration. The idea of convolution with a
window function in the time domain is equivalent to a low-pass filter in the frequency
domain used in signal processing and Gabor transformation in wavelet theory [8]. A similar
approach has been used to recover high-order approximations of discontinuous functions
from their Fourier coefficients in spectral methods [9]. The fast decay rate of the window
function in the spectral domain effectively creates a steep descent path for the integration
without the existence or the information of the location of possible steep descent paths for
the spectral Green’s functions. Extensive numerical results have confirmed the effectiveness
of this method, especially when the observation and source locations are close, whereas the
Sommerfeld integration will converge extremely slow. A comprehensive code WDS (Wave
Design Simulator) [10], which uses this window function technique, has been used to carry
out 3-D full wave analysis of RF components and scattering of general objects in arbitrary
multilayered media.

The rest of the paper is divided into the following sections: Section 2 gives a brief
introduction to the dyadic Green’s functions in a multilayered medium; in Section 3, Green’s
functions for the vector and scalar potentials used in the mixed potential integral equations
are described; Section 4 gives the window-function-based acceleration technique and error
estimations; Section 5 provides several numerical examples to demonstrate the effectiveness
and accuracy of the proposed methods; and a conclusion is given in Section 6. The appendix
contains technique derivations and proofs.

2. DYADIC GREEN’S FUNCTION IN MULTILAYERED MEDIA

In this section we present the setup for the dyadic Green’s functionsḠE(r | r ′), ḠH (r | r ′)
in a multilayered medium. As we only consider time-harmonic fields, a time-harmonic factor
ejωt is assumed in all field quantities. The medium considered is shown in Fig. 1. It is a strat-
ified structure consisting ofN + 1 dielectric layers separated byN planar interfaces parallel
to thex–y plane of a Cartesian coordinate system and located atz= −di , i = 0, 1, . . . , N.
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FIG. 1. A three-dimensional scatterer embedded in anN + 1 layered medium.

The medium of themth layer is characterized by permeabilityµm and permittivityεm.

Components of dyadic Green’s functions̄GE(r | r ′), ḠH (r | r ′) represent the electromag-
netic fields at locationr excited by current Hertz dipole atr ′; namely,Gst

E is thes-component
of the electric field generated by at-oriented current Hertz dipole,s, t = x, y, z.

2.1. Two-Dimensional Fourier and Hankel Transformations

As the multilayered medium is radially symmetric in thex–y plane, we can apply the
two-dimensional Fourier transform to the Maxwell equations [11] to obtain the components
of the dyadic Green’s function in the Fourier transform (spectral) domain. The following
identities will be used in finding the Green’s function in time domain once the spectral form
of the Green’s function is obtained:

F{ f (x, y)} = f̃ (kx, ky) = 1

2π

∫ ∞
−∞

∫ ∞
−∞

f (x, y)e− j [kx x+ky y] dx dy (2.1)

F−1{ f̃ (kx, ky)} = f (x, y) = 1

2π

∫ ∞
−∞

∫ ∞
−∞

f̃ (kx, ky)e
j [kx x+ky y] dkx dky. (2.2)

The Fourier integrals (2.1)–(2.2) can be conveniently expressed in terms of the Hankel trans-
form if f (x, y) = f (ρ) is a radially symmetric function ofρ. Introducing polar coordinates
in both the transform and space domains,

x = ρ cosβ, y = ρ sinβ,

kx = kρ cosα, ky = kρ sinα,

where

ρ =
√

x2+ y2, β = arctan

(
y

x

)
,

kρ =
√

k2
x + k2

y, α = arctan

(
ky

kx

)
,
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we can show that

f̃ (kρ) = F{ f (ρ)} = S0[ f (ρ)](kρ) (2.3)

and

f (ρ) = F−1{ f̃ (kρ)} = S0[ f̃ (kρ)](ρ), (2.4)

where thenth-order Hankel transformSn[ f̃ (kρ)] for integern ≥ 0, is defined as

Sn[ f̃ (kρ)](ρ) =
∫ ∞

0
f̃ (kρ)Jn(kρρ)k

n+1
ρ dkρ (2.5)

and the roles ofρ andkρ can be switched and whereJn(z) is thenth-order Bessel function.

2.2. Dyadic Green’s Functions̄GE, ḠH

From the Maxwell equations [11], the electric field is shown to satisfy the vector equation

∇×∇× E− k2 E = − jωµ J (2.6)

whereJ is the current source. In a source-free region, we have the following vector Helmholtz
equation:

∇2E+ k2E = jωµ J. (2.7)

The dyadic electric Green’s function̄G.,t
E is the solution to (2.7) when the source is

a t-directed electric dipole, namelyJ(r ) = 1
jωµδ(r − r ′)t . The magnetic dyadic Green’s

functionḠH can be obtained by

ḠH (r | r ′) = − 1

jωµ
∇× ḠE(r | r ′). (2.8)

3. DYADIC GREEN’S FUNCTIONS ḠA(r | r ′), GV(r | r ′)

In this section, we describe the dyadic Green’s functions for both vector potentials and
scalar potentials. These are used for the mixed potential integral equation formulation
(MPIE) of scattering problems [3, 4].

In a MPIE formulation, the electromagnetic fields can be expressed in terms of a vector
potentialA and a scalar potentialVe, i.e.,

E = − jωA −∇Ve (3.1)

H = 1

µ
∇× A, (3.2)

where

∇2A + k2A − µ∇ 1

µ
×∇× A = −µ Je (3.3)



CALCULATION OF DYADIC GREEN’S FUNCTION 5

and whereJe is the electric current source andk2 = ω2εµ. Equation (3.3) simplifies to the
following equation whenµ is a constant:

∇2A + k2A = −µ Je. (3.4)

If the Lorentz gauge condition is used to relateVe to A, i.e.,

∇ · A = − jωεµVe, (3.5)

then we have

∇2Ve+ k2Ve = −1

ε
ρe, (3.6)

whereρe is the charge density related to the electric currentJe by the continuity equation

∇ · Je+ jωρe = 0. (3.7)

The vector potentials used to represent the magnetic fieldH in (3.2) are not unique
and there are many ways of defining the potentials. Two of the most used approaches are
Sommerfeld potentials [12] and transverse potentials [13, 14]. In formulating these poten-
tials, we take into account that only two components of the magnetic field are independent,
thus only two components of these vector potentials are sufficient. In the Sommerfeld po-
tential formulation, it is stipulated that the electromagnetic fields from a horizontal electric
dipole (HED) can be represented by a horizontal component ofA in the same direction of
the HED and thez-component ofA; fields of a VED (vertical electric dipole) will be repre-
sented by only thez-component ofA. In contrast, for the transverse potential formulation,
HED generated electromagnetic fields will be represented by two transverse components
of A while a VED generated field is represented by only thez-component ofA. Other
potentials include Hertz–Debye potentials [15].

Sommerfeld potential.The dyadic Green’s function̄GA for the Sommerfeld vector
potentialA [12] has the form

ḠA =
(
x̂Gxx

A + ẑGzx
A

)
x̂ + (ŷGyy

A + ẑGzy
A

)
ŷ+ ẑGzz

A ẑ. (3.8)

Transverse potentials.The dyadic Green’s function̄GA for the transverse vector poten-
tial A [13, 14] has the form

ḠA =
(
x̂Gxx

A + ŷGyx
A

)
x̂ + (x̂Gxy

A + ŷGyy
A

)
ŷ+ ẑGzz

A ẑ. (3.9)

The scalar potentialGV (r | r ′) and the components in the Sommerfeld and transverse
potentials can be obtained in the spectral domain; explicit formulas can be found in [3, 10].

4. FAST CALCULATION OF DYADIC GREEN’S FUNCTIONS ḠA(ρ, z; z′), GV(ρ, z; z′)

The spectral components of the vector and scalar potential Green’s functionG̃A(ρ, z; z′)
andG̃V (kρ, z; z′) in Section 3 can be shown [3, 10] to consist of terms such as

jkxG̃(kρ, z; z′), jkyG̃(kρ, z; z′) (4.1)
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whereG̃(kρ, z; z′) is a function ofkρ . Thus, the inverse Fourier transform of (4.1) can be
evaluated as

F−1{ jkxG̃(kρ, z; z′)} = ∂

∂x
F−1{G̃(kρ, z; z′)} = ∂

∂x
S0(G̃(kρ, z; z′)) (4.2)

F−1{ jkyG̃(kρ, z; z′)} = ∂

∂y
F−1{G̃(kρ, z; z′)} = ∂

∂y
S0(G̃(kρ, z; z′)). (4.3)

The partial derivatives with respect tox or y can be approximated by a finite difference
formula with appropriate accuracy. Therefore, we only have to discuss an acceleration
algorithm for calculating the Hankel transformation

G(ρ, z; z′) = S0(G̃(kρ, z; z′)) =
∫

C
G̃(kρ, z; z′)J0(ρkρ)kρ dkρ, (4.4)

where the contourC should be in the first quadrant of the complex wavenumberkρ space
from 0 to∞.

The main difficulty involving the calculation of functionG(ρ, z; z′) via the Hankel trans-
form (4.4) is the fact that the integrand decays very slowly whenz= z′, orz∼ z′ (i.e., when
the source point and the observation point are on or nearly on the same horizontal plane).
In order to accelerate the calculation ofG(ρ, z; z′) whenz∼ z′ or z= z′, we introduce the
following mth-order window functionψa(x, y) = ψa(ρ) with a support sizea:

ψa(ρ) =
{(

1− ( ρa)2)m
, if ρ ≤a

0, otherwise.
(4.5)

We have the following lemma regarding the window functionψa(ρ).

LEMMA 1. For any cylindrical symmetrical function f(ρ), we have the identity

f (x, y) ∗ ψa(x, y) = S0[ f̃ (kρ)ψ̃a(kρ)](ρ), (4.6)

where

f̃ (kρ) = S0[ f (ρ)](kρ)

and

ψ̃a(kρ) = S0[ψa(ρ)](kρ).

To recover the value off (x, y) from its Hankel transform, we also need the following
result.

LEMMA 2. Let f(x, y) be a C2 function. Then it can be shown that

f (x, y) ∗ ψa(x, y) = M0 f (x, y)+ M2( fxx(ξ, 0)+ fyy(ξ, 0)), (4.7)

where0≤ ξ ≤ ρ =
√

x2+ y2 and

M0 =
∫
√

x2+y2≤a
ψa(x, y) dx dy= πa2

m+ 1

M2 =
∫
√

x2+y2≤a
ψa(x, y)x2 dx dy.
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Proof. The estimate (4.7) can be obtained by using a second-order Taylor expansion
for the function f (x′, y′) at point(x, y) and using the fact that terms such as(x′ − x) and
(y′ − y) will vanish in the convolution with the radial symmetrical functionψa(x, y). j

As a result of (4.6) and (4.7), we can approximatef (x, y) as

f (x, y) = 1

M0
S0[ f̃ (kρ)ψ̃a(kρ)](ρ)+ O(a2) asa→ 0. (4.8)

Applying (4.8) toG(ρ, z′; z′), we obtain the following algorithm.

ALGORITHM 1 (Fast algorithm forG(ρ, z; z′)). Forρ > a,

G(ρ, z; z′) = 1

M0
W0(ρ)+ O(a2) asa→ 0, (4.9)

where

W0(ρ) = S0[G̃(kρ, z; z′)ψ̃a(kρ)](ρ). (4.10)

Remark 1. Algorithm 1 requires conditionρ > a as otherwise the Green’s function will
be unsmooth and the estimate in (4.7) will not be valid.

Therefore, to apply the approximation (4.8) to functionG(ρ, z′; z′) for ρ ≤a, we will
rewriteG(ρ, z′; z′) as

G(ρ, z; z′) = G2(ρ, z; z′)/r 2, (4.11)

wherer =
√

x2+ y2+ (z− z′)2. From the singularity property of the vector and scalar
potential Green’s function [16], we can assume thatG2(ρ, z; z′) = r 2G(ρ, z; z′) is a smooth
function, and the approximation (4.8) thus can be used. Meanwhile, we have the following
identity.

LEMMA 3. Let G2(ρ, z; z′) = r 2G(ρ, z; z′), with r =
√
ρ2+ (z− z′)2. Then

G2(ρ, z; z′) ∗ ψa(x, y) = r 2W0(ρ)− 2ρW1(ρ)+W2(ρ), (4.12)

where

W1(ρ) = S0[G̃(kρ, z; z′)ψ̃∗a(kρ)](ρ) (4.13)

W2(ρ) = S0[G̃(kρ, z; z′)ψ̃∗∗a (kρ)](ρ) (4.14)

and

ψ̃a(kρ) = S0[ψa(ρ)](kρ) =
∫ a

0
ψa(ρ)J0(kρρ)ρ dρ (4.15)

ψ̃∗a(kρ) = S1[ψa(ρ)](kρ) =
∫ a

0
ψa(ρ)J1(kρρ)ρ

2 dρ (4.16)

ψ̃∗∗a (kρ) =
∫ a

0
ψa(ρ)J0

(
kρρ
)
ρ3 dρ. (4.17)
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Proof. The proof of (4.12) can be found in the Appendix.j

Combining (4.7) and (4.12), we have the following approximation scheme to the Green’s
function.

ALGORITHM 2 (Fast Algorithm forG(ρ, z; z′)). If ρ > 0,a→ 0, then

G(ρ, z; z′) = 1

M0r 2
[r 2W0(ρ)− 2ρW1(ρ)+W2(ρ)] + O(a2). (4.18)

Next, we will address the issue of how to calculateW0(ρ),W1(ρ), andW2(ρ). First we
need the following spectral properties ofψa(ρ) andψ̃∗a(kρ) andψ̃∗∗a (kρ).

LEMMA 4. The Hankel transform̃ψa(kρ) for ψa(ρ) andψ̃∗a(kρ) andψ̃∗∗a (kρ) have the
following decaying properties, i.e., as|kρ | → ∞:

|ψ̃a(kρ)| = o(|akρ |−m) (4.19)

|ψ̃∗a(kρ)| = o(|akρ |−m+1) (4.20)

|ψ̃∗∗a (kρ)| = o(|akρ |−m). (4.21)

Proof. We will outline the proof of (4.19), the other two decay conditions can be shown
similarly. Using the equivalence between the 2-D Fourier transform and the Hankel trans-
form (2.3), we can rewritẽψa(kρ) as

ψ̃a(kρ) = F(ψa)(kρ, 0) = 1

2π

∞∫ ∫
−∞

ψa(x, y)e− jkρx dx dy

which, after integration by parts with respect tox variablem times, becomes

ψ̃a(kρ) = (−1)m

2π(− jkρ)m

∞∫ ∫
−∞

∂mψa

∂mx
(x, y)e− jkρx dx dy= o

(
1

km
ρ

)
.

To derive the estimate (4.20) for̃ψ∗a(kρ), we first use the identityJ ′0(x)=−J1(x) and
integrate by parts with respect toρ to rewriteψ∗a (kρ) as

ψ̃∗a(kρ) =
∫ a

0
φ(ρ)J0(kρρ)ρ dρ

whereφ(ρ) = ψ ′a(ρ)ρ + 2ψa(ρ). Then, the same proof can be used to get (4.20).j

The fast decay condition of (4.19)–(4.21) ensures that a short integration contour can be
selected without sacrificing the accuracy of approximation of Algorithms 1 and 2.

4.1. Selection of Contour C and Window Order m and Support a

It is well known that the spectral form̃G(kρ, z; z′) has surface wave poles which are
located in the fourth quadrant of the complexkρ plane. Therefore, we should deform the
integration contour in the definition ofWi (ρ), i = 0, 1, 2, to a complex contour which stays
away from the surface poles. A simple contourC, suggested in Fig. 2, consists of four
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FIG. 2. ContourC for Algorithms 1 and 2.

straight segmentsLi , 1≤ i ≤ 4. The last segmentL4 will be finite and is determined by the
decay properties of (4.19)–(4.21).

To maintain the second-order accuracyO(a2) of Algorithms 1 and 2, we will choose the
L4 portion of the contourC in Fig. 2 to satisfy the following minimum condition, while
using the decay condition (4.19)–(4.21):

L4 ≥
[

C∞
a2(m− s− 3)

] 1
m−s−3

. (4.22)

Here we assume that forkρ ∈ [kmax,∞), we have for some integers and constantC∞

|G̃(kρ, z; z′)| ≤C∞(kρ)s.

The window supporta is the primary parameter to consider. It is determined by the
second-order accuracy estimate (4.18) for the algorithm for the dyadic Green’s function.
Oncea is selected, the length of the contourL4 should be given by (4.22).

The order of the window functionm in principle should be large to have faster decays
of ψ̃a(kρ), ψ̃∗a(kρ), andψ̃∗∗a (kρ) according to (4.19)–(4.21). However, for smaller value
of kρ , windows with lower order may have smaller magnitude in the spectral domain (see
Figs. 3–5). In our numerical tests, a windowψa(ρ) of order 5(m= 5) was a good overall
choice.

4.2. Calculations ofψ̃a(kρ), ψ̃∗a(kρ), andψ̃∗∗a (kρ)

In practice, these functions can be precalculated for a range ofkρ as determined by the
estimate (4.22). For small argument, they can be calculated directly by Gauss quadratures,
while for largerkρ we can use the identities

ψ̃a(kρ) =
m∑

i=0

Cm
i (−1)i

1

a2i k2i+2
ρ

I 0
2i+1(akρ)

ψ̃∗a(kρ) =
m∑

i=0

Cm
i (−1)i

1

a2i k2i+3
ρ

I 1
2i+2(akρ)

ψ̃∗∗a (kρ) =
m∑

i=0

Cm
i (−1)i

1

a2i k2i+4
ρ

I 0
2i+3(akρ),
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FIG. 3. The spectral decay of window functions̃ψa(kρ),a = 1 of orderm= 3, 5, 7. Inset is the shape of
window functionψa(ρ),a = 1 of orderm= 3, 5, 7.

FIG. 4. Spectral decay of window functions̃ψ∗a(akρ),a = 1 of orderm= 1, 3, 5, 7.
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FIG. 5. Spectral decay of window functions̃ψ∗∗a (akρ),a = 1 of orderm= 1, 3, 5, 7.

where for positive or zero integersµ, ν

I νµ(z) =
∫ z

0
ρµJυ(ρ) dρ.

For small arguments ofz= akρ , I νµ(z) and (4.15)–(4.17) can be calculated directly with
Gaussian quadrature, while for large values ofz, we can use the formulas

I νµ(z) = 2µ
0
(
ν+µ+ 1

2

)
0
(
ν−µ+ 1

2

) + z[(µ+ ν − 1)Jν(z)Sµ−1,ν−1(z)− Jν−1(z)Sµ,ν(z)],

whereSµ,ν(z) are the Lommel functions (see Appendix A.2).

5. NUMERICAL RESULTS

In this section, we validate Algorithm 2 for the fast calculation of dyadic Green’s functions
in homogeneous and multilayered media. In all cases, the frequency in the Green’s function
f = 1 GHz.

5.1. Window Functions in Spectral Domain

The window functionψa(x, y) of orderm has a compact support in the physical domain
while in the spectral domain it decays in an algebraic order 1/km

ρ ; so do bothψ̃∗a(kρ)
and ψ̃∗∗a (kρ) used in Algorithm 2. Figure 3 shows both window functionsψa(x, y) of
orderm= 3, 5, 7 with support sizea = 1 (lower left insert) and their frequency decays,
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respectively. Figures 4 and 5 show the frequency decays ofψ̃∗a(kρ) andψ̃∗∗a (kρ) of order
m= 1, 3, 5, 7 with supporta = 1, respectively.

5.2. Second-Order Accuracy and Efficiency of Algorithm 2

Algorithm 2 is second-order accurate,O(a2). The contour integrations in the definition
of Wi (ρ), i = 0, 1, 2, of Algorithm 2 are only evaluated over a truncated finite path as in
Fig. 2. By choosing theL4 portion of contourC according to (4.22), we can maintain
an overall error ofO(a2). To verify the second-order accuracy, we apply Algorithm 2 to
calculate the scalar potential for the free-space Green’s function

Gv(ρ, z; z′) = 1

4π

e− jk R

R
, (5.1)

whereR= |r − r ′|.
Figure 6 shows the real and imaginary parts of calculated results forGv(ρ, z; z′), z=

0.001 m, z′ = 0.002 m. The lines are the exact solutions given by (5.1) and the symbols are
the calculation by Algorithm 2 withL4 = 20/a in the contour of Fig. 2. A windowψa(ρ)

of orderm= 5 and support sizea = 0.005 m is used. Figure 7 shows the errors in log-scale
of three applications of Algorithm 2 with three different window sizesa = w, 2w, and 4w,
wherew = 0.005 m. It is clear to see that the convergence rate isO(a2).

Finally, Fig. 8 shows the savings of Algorithm 2 over the direct Sommerfeld integration
of (4.4). In Fig. 8,G f denotes the calculation results of Algorithm 2 (squares, diamonds,

FIG. 6. Free-space scalar Green’s functionGV (ρ, z; z′), z= 0.001 m,z′ = 0.002 m. Lines indicate analytic
results; symbols are for calculations with Algorithm 2 with windowψa(ρ) of orderm= 5 and window support
a = 0.005 m.
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FIG. 7. Free-space scalar Green’s functionGV (ρ, z; z′), z= 0.001 m,z′ = 0.002 m. Relative errors with
Algorithm 2 with windowψa(ρ) of orderm= 5 and window supporta = h, 2h, and 4h, whereh = 0.005.

FIG. 8. Green’s functionGV (ρ, z; z′), z= 0.001 m, z′ = 0.002 m. Errors of Algorithm 2 with window
functionψa(ρ) of orderm= 5 andL4 = L , 2L(♦), and 4L(5); L = 5/a; window support sizea = 0.005. Errors
of direct numerical integration of (4.4) usingL4 = 240L(4), 400L(✩).
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FIG. 9. Half free space over a PEC atz= 0.

down triangles) with the last portion of contour (2)L4 = L , 2L, and 4L, whereL = 5/a
anda = 0.005 m is the support size of the window function of orderm= 5. Gs denotes
the direct integration of Sommerfeld integration (4.4), and upper triangles and stars are
the results with a truncated contourL4 = 240L , 400L, respectively. From Fig. 8, we can
see that results of Algorithm 2 withL4 = 2L are already better than those of the direct
Sommerfeld integration withL4 = 400L; thus the contours used in Algorithm 2 are 200
times shorter than those used in direct integrations (4.4).

5.3. Green’s Functions for a Half Space over a PEC Ground Plane

In this test case, we calculate the vector potential Green’s functionGA(ρ, z; z′) for a half
free space over a perfect conductor (PEC) ground plane atz= 0 in Fig. 9, where analytic
forms of the Green’s functions are available by using mirror images [11].

Figure 10 contains the calculated real and imaginary part of the scalar potential Green’s
functionGV (ρ, z; z′), z= 0.001 m,z′ = 0.002 m. Again, windowψa(ρ) of orderm= 5
with support sizea = 0.005 m is used andL4 = 20/a in the contourC of Fig. 2.

5.4. ḠA(ρ, z; z′), GV(ρ, z; z′) for a Five-Layered Medium

In this test case, we calculate the dyadic Green’s functionsḠA(ρ, z; z′),GV (ρ, z; z′) for
the five-layered medium depicted in Fig. 11. Four dielectric layers are used between the
open air and a PEC ground plane. The relative dielectric constants for the four dielectric
layers are, from top to bottom,ε1 = 9.6, ε2 = 12.5, ε1 = 2.4, andε1 = 3.6, respectively.
Their corresponding thickness areh1 = 0.001 m,h2 = 0.003 m,h1 = 0.002 m, andh1 =
0.0015 m, respectively.

Windowψa(ρ) of orderm= 5 with support sizea = 0.001 m is used in Algorithm 2 and
theL4 = 20/a is the last portion of the contourC in Fig. 2. Figure 12 shows the magnitude
and imaginary and real parts (top to bottom, lines are from integration of Hankel transform
(4.4); symbols are results of Algorithm 2) of the scalar Green’s functionGV (ρ, z; z′) with
z= −0.0035 m,z′ = −0.0062 m. Figure 13 shows the componentGxx

A (ρ, z; z′) for the
vector potentialA along with the magnitude and imaginary and real parts of this component
(top to bottom, lines are from integration of Hankel transform (4.4); symbols are results
from Algorithm 2). Figure 14 shows similar results for the componentGzz

A (ρ, z; z′).



CALCULATION OF DYADIC GREEN’S FUNCTION 15

FIG. 10. GV (ρ, z; z′), z= 0.001 m,z′ = 0.002 m for a half free space over a PEC ground plane atz= 0.
Lines are the analytic results; symbols are the results of Algorithm 2 with windowψa(ρ) of orderm= 5 and
support sizea = 0.005 m, withL4 = 20/a in the contourC of Fig. 2.

5.5. Comparison with Method of Complex Images

In the last numerical test, we compare our method with the method of complex images
of [5, 6]. The method of complex images has been extensively used in the engineering
communities for the calculation of dyadic Green’s functions. The idea is based on the
Sommerfeld identity

e− jkr

r
= − j

2

∫
C

dkρH (2)
0 (kρρ)

e− jkz|z|

kz
, (5.2)

wherekz=
√

k2− k2
ρ andC is an integration contour from−∞ to∞ in the first and third

quadrant of the complexkρ-plane.

FIG. 11. A five-layer medium: four dielectrics layered between the air(z= 0) and a PEC ground plane.



FIG. 12. Scalar Green’s functionsGV (ρ, z; z′), z= −0.0035 m,z′ = −0.0062 m for the five-layered medium
in Fig. 9. Lines are results of direct integration of (4.4) for comparison; symbols are results of Algorithm 2 with
windowψa(ρ) of orderm= 5 and window sizea = 0.001 m, withL4 = 20/a in the contourC of Fig. 2.

FIG. 13. Vector potential Green’s functionsGxx
A (ρ, z; z′), z= −0.0035 m, z′ = −0.0062 m for the five-

layered medium in Fig. 9. Lines are results of direct integration of (4.4) for comparison; symbols are results of
Algorithm 2 with windowψa(ρ) of orderm= 5 and window sizea = 0.001 m, withL4 = 20/a in the contour
C with Fig. 2.

16
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FIG. 14. Vector potential Green’s functionsGzz
A (ρ, z; z′), z= −0.0035 m,z′ = −0.0062 m for the five-

layered medium in Fig. 9. Lines are results of direct integration of (4.4) for comparison; symbols are results of
Algorithm 2 with windowψa(ρ) of orderm= 5 and window sizea = 0.001 m, withL4 = 20/a in the contour
C of Fig. 2.

FIG. 15. Error comparison of the method of complex images (top line with 10 complex images) and our
window-based fast algorithm (bottom three lines with window orderm= 5 and supporta = 4h, 2h, h respectively,
whereh = 0.001 andL4 = 10/a).
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FIG. 16. Half space (air–soil with 5% water content).

The Green’s function in the spectral domain is approximated by a sum of exponential
functions, namely

G̃(kρ, z; z′) '
n∑

i=1

ai
e− jkri

r i
, (5.3)

whereai is the complex magnitude andri =
√
ρ2+ (z+ z′ − jbi )2 is the complex distance

of the complex images. The coefficientsai andbi are obtained using a Prony method to fit
sampled values of thẽG(kρ) along a finite portion of the integration pathC.

We have found out that such an approach will give good results when the source and
observation points are on the same layer of a multilayered structure. However, the method
of complex images does not perform well when source and observation points are not on the
same level, and the Prony procedure for obtaining the coefficientsai andbi also becomes
unstable and inefficient when high-frequency problems are considered.

In Figure 15, we present the results of both the method of complex images and our
method (withm= 5 andL4 = 10/a and three different values ofa = 4h, 2h, andh, with
h = 0.001) for the two-layer structure of Fig. 16 (air over soil with 5% water content). The
top line is the relative error in logrithmic scale with complex images (10 complex images);
the other three lines depict the relative error in logrithmic scale with decreaing size ofa.

6. CONCLUSION

We have proposed a novel acceleration method for calculation of the Sommerfeld integrals
in the definition of dyadic Green’s functions for electromagnetic scattering of conductors
embedded in multilayered media. The introduction of a window function effectively reduces
the cost of the calculation of the Sommerfeld integration by forcing a faster decay of the
integrands. The efficiency and accuracy of the calculation of the multilayered Green’s func-
tions are critical to the speed of the method of moments for the electromagnetic scattering
of conductors in multilayered media. Numerical results presented in this paper and also in
[10] show the effectiveness and accuracy of the proposed method. Because Algorithm 2
involves three integrals, compared with just one in Algorithm 1, a combination of the two
algorithms can give better efficiency. Moreover, the fast Hankel transformation approach
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proposed in [17] can be combined with Algorithms 1 and 2 for further speeding up of the
calculation.

APPENDIX

A.1. Proof of Lemma 3 (4.12)

From the definition of the convolution, we have with1z= z− z′

G2(ρ, z; z′) ∗ ψa(x, y)

= 1

2π

∫ ∞
−∞

∫ ∞
−∞
(x′ 2+ y′ 2+1z2)G(x′, y′, z; z′)ψa(x − x′, y− y′) dx′dy′

= r 2[G(ρ, z; z′) ∗ ψa(x, y)] − 2x[G(ρ, z; z′) ∗ xψa(x, y)]

− 2y[G(ρ, z; z′) ∗ yψa(x, y)] + G(ρ, z; z′) ∗ ((x2+ y2)ψa(x, y))

= r 2W0(ρ)− 2xV1− 2yV2+W2(ρ). (A.1)

In arriving at the second equation, we have used identitiesx′ 2 = x2+ 2x(x′ − x)+
(x′ − x)2 andy′2 = y2+ 2y(y′ − y)+ (y′ − y)2.Using the integral definition of the Bessel
function,

Jn(z) = j−n

π

∫ π

0
ejz cosθ cosnθ dθ,

we can show that

V1 = G(ρ, z; z′) ∗ xψa(x, y) = cosθ
∫ ∞

0
G̃(kρ, z; z′)J1(ρkρ)ψ̃

∗
a(kρ) kρ dkρ (A.2)

and

V2 = G(ρ, z; z′) ∗ yψa(x, y) = sinθ
∫ ∞

0
G̃(kρ, z; z′)J1(ρkρ)ψ̃

∗
a(kρ) kρ dkρ, (A.3)

whereψ̃∗a(kρ) is defined in (4.16). Therefore,

xV1+ yV2 = ρ
∫ ∞

0
G̃(kρ, z; z′)J1(ρkρ)ψ̃

∗
a(kρ) kρ dkρ

= ρS0[G̃(kρ, z; z′)ψ̃∗a(kρ)](ρ) = ρW1(ρ). (A.4)

Similarly, we can show that

W2(ρ) = G(ρ, z; z′) ∗ ((x2+ y2)ψa(x, y)) = S0[G̃(kρ, z; z′)ψ̃∗∗a (kρ)](ρ), (A.5)

whereψ̃∗∗a (kρ) is given in (4.17). Substituting (A.4) and (A.5) into (A.1), we have the proof
of (4.12).
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A.2. Lommel Function

If µ+ ν orµ− ν is a positive integer, thenSµ,ν(z) has a finite polynomial expansion in
terms of 1/z, i.e.,

Sµ,ν(z) = zµ−1
n∑

k=0

0(−ia + 1)0(−ib + 1)

0(−ia − k+ 1)0(−ib − k+ 1)
(−1)k

(
2

z

)2k

with n = min(−ia,−ib), ia = 1−µ+ υ
2 , ib = 1−µ− υ

2 .
For other values ofµ, ν, we have the asymptotic approximations [19]

Sµ,ν(z) ≈ zµ−1
3F0

(
1, ia, ib,− 4

z2

)
= zµ−1

{
1− (µ− 1)2− ν2

z2
+ [(µ− 1)2− ν2][(µ− 3)2− ν2]

z4

− [(µ− 1)2− ν2][(µ− 3)2− ν2][(µ− 5)2− ν2]

z6
+ · · ·

}
,

where3F0(1, ia, ib,− 4
z2 ) is the hypergeometric function [19].
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